Girder Documentation
Release 1.4.1

Kitware

January 27, 2016

Contents

1 Whatis Girder? 1
2 The architecture 3
3 Table of contents 5
3.1 Administrator Documentation e e e e e e e e e e e e 5
3.2 User Documentation v v i i i i e e e e e e e e e 14
3.3 Developer Documentation e e e e e e e e 18
34 Plugins oo e 87
4 API index 93
Python Module Index 95

CHAPTER 1

What is Girder?

Girder is a free and open source web-based data management platform. What does that mean? Girder is both a
standalone application and a platform for building new web services. It’s meant to enable quick and easy construction
of web applications that have some or all of the following requirements:

* Data organization and dissemination Many web applications need to manage data that are dynamically pro-
vided by users of the system, or exposed through external data services. Girder makes construction and
organization of dynamic data hierarchies simple. One of the most powerful aspects of Girder is that it can
transparently store, serve, and proxy data from heterogeneous backend storage engines through a single
RESTful web API, including local filesystems, MongoDB databases, Amazon S3-compliant key-value
stores, and Hadoop Distributed Filesystems (HDFS).

» User management & authentication Girder also includes everything needed for pluggable user management
and authentication out of the box and adheres to best practices in web security. The system can be con-
figured to securely store credentials itself, or defer to third-party authentication services such as OAuth or
LDAP.

¢ Authorization management Girder supports a simple access control scheme that allows both user-based and
role-based access control on resources managed in the system. The project has undergone rigorous security
audits and has extensive automated testing to exercise authorization behavior and ensure correctness.

For an overview of the concepts present in Girder, we recommend checking out the User Guide.

Girder is published under the Apache 2.0 License. Its source code can be found at https://github.com/girder/girder.

https://github.com/girder/girder

Girder Documentation, Release 1.4.1

2 Chapter 1. What is Girder?

CHAPTER 2

The architecture

Girder’s server-side architecture is focused around the construction of RESTful web APIs to afford minimal coupling
between the backend services and the frontend clients. This decoupling allows multiple clients all to use the same
server-side interface. While Girder does contain its own single-page javascript web application, the system can be
used by any HTTP-capable client, either inside or outside of the web browser environment. Girder can even be run
without its front-end application present at all, only serving the web API routes.

The web API is mostly used to interact with resources that are represented by models in the system. Models internally
interact with a Mongo database to store and retrieve persistent records. The models contain methods for creating,
changing, retrieving, and deleting those records. The core Girder model types are described in the Concepts section of
the user guide.

The primary method of customizing and extending Girder is via the development of plugins, the process of which is
described in the Plugin Development section of this documentation. Plugins can, for example, add new REST routes,
modify or remove existing ones, serve up a different web application from the server root, hook into model lifecycle
events or specific API calls, override authentication behavior to support new authentication services or protocols, add
a new backend storage engine for file storage, or even interact with a completely different DBMS to persist system
records — the extent to which plugins are allowed to modify and extend the core system behavior is nearly limitless.

Plugins are self-contained in their own directory within the Girder source tree. Therefore they can reside in their
own separate source repository, and are installed by simply copying the plugin source tree under an existing Girder
installation’s plugins directory. The Girder repository contains several generally useful plugins out of the box, which
are described in the Plugins section.

Girder Documentation, Release 1.4.1

4 Chapter 2. The architecture

CHAPTER 3

Table of contents

3.1 Administrator Documentation

3.1.1 System Prerequisites

The following software packages are required to be installed on your system:
e Python 2.7 or 3.4
* pip
* MongoDB 2.6+
* Node.js

Additionally, in order to send out emails to users, Girder will need to be able to communicate with an SMTP server.
Proper installation and configuration of an SMTP server on your system is beyond the scope of these docs, but we
recommend setting up Postfix.

See the specific instructions for your platform below.

Note: We perform continuous integration testing using Python 2.7 and Python 3.4. The system should work on other
versions of Python 3 as well, but we do not verify that support in our automated testing at this time, so use at your own
risk.

Warning: Some Girder plugins do not support Python 3 at this time due to third party library dependencies.
Namely, the HDFS Assetstore plugin and the Metadata Extractor plugin will only be available in a Python 2.7
environment.

* Debian / Ubuntu

* CentOS / Fedora / Red Hat Enterprise Linux
* Arch Linux

s OSX

e Windows

Debian / Ubuntu

Install the prerequisites using APT:

https://www.python.org
https://pypi.python.org/pypi/pi
http://www.mongodb.org/
http://nodejs.org/
http://www.postfix.org/documentation.html

Girder Documentation, Release 1.4.1

‘sudo apt-get install curl g++ git libffi-dev make python-dev python-pip

MongoDB 2.6 requires a special incantation to install at this time. Install the APT key with the following:

‘sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 7F0CEB10

For Debian, create the following configuration file for the MongoDB APT repository:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' \
| sudo tee /etc/apt/sources.list.d/mongodb.list

For Ubuntu, instead create the following configuration file:

echo 'deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist 10gen' \
| sudo tee /etc/apt/sources.list.d/mongodb.list

Reload the package database and install MongoDB server using APT:

sudo apt-get update
sudo apt-get install mongodb-org-server

Enable the Node.js APT repository:

curl -sL https://deb.nodesource.com/setup | sudo bash -

Install Node.js and NPM using APT:

‘sudo apt-get install nodejs

CentOS / Fedora / Red Hat Enterprise Linux

For CentOS and Red Hat Enterprise Linux, enable the Extra Packages for Enterprise Linux YUM repository:

’sudo yum install epel-release

Install the prerequisites using YUM:

’sudo yum install curl gcc-c++ git libffi-devel make python-devel python-pip

Create a file /etc/yum.repos.d/mongodb. repo that contains the following configuration information for the
MongoDB YUM repository:

[mongodb]

name=MongoDB Repository
baseurl=http://downloads-distro.mongodb.org/repo/redhat/os/x86_64/
gpgcheck=0

enabled=1

Install MongoDB server using YUM:

‘sudo yum install mongodb-org-server

Enable the Node.js YUM repository:

‘curl -sL https://rpm.nodesource.com/setup | sudo bash -

Install Node.js and NPM using YUM:

6 Chapter 3. Table of contents

https://fedoraproject.org/wiki/EPEL

Girder Documentation, Release 1.4.1

sudo yum install nodejs

Arch Linux

For Arch Linux it is important to note that Python 3 is default. This means that most commands will need a 2 appending
to them, i.e. python2, pip2, ...

Install the prerequisites using the pacman tool:

sudo pacman -S python2 python2-pip mongodb nodejs

0S X

It is recommended to use Homebrew to install the required packages on OS X.

To install all the prerequisites at once just use:

‘brew install python mongodb node

Note: OS X ships with Python in /usr/bin, so you might need to change your PATH or explicitly run
/usr/local/bin/python when invoking the server so that you use the version with the correct site packages
installed.

Windows

Warning: Windows is not supported or tested. This information is provided for developers. Use at your
own risk.

Download, install, and configure MongoDB server following the instructions on the MongoDB website, and download
and run the Node.js Windows Installer from the Node.js website.

Download and install the Windows MSI Installer for the latest Python 2 release from the Python website, and
then download and run the ez_setup.py bootstrap script to install Setuptools for Python. You may need to add
python\scripts to your path for NPM to work as expected.

From a command prompt, install pip:

easy_install pip

If berypt fails to install using pip (e.g., with Windows 7 x64 and Python 2.7), you need to remove the line for berypt
from the requirements. txt file and manually install it. You can build the package from source or download a
wheel file from https://bitbucket.org/alexandrul/py-berypt/downloads and install it with the following:

pip install wheel
pip install py_bcrypt.whl

3.1.2 Installation

Before you install, see the System Prerequisites guide to make sure you have all required system packages installed.

3.1. Administrator Documentation 7

http://brew.sh/
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows/
http://nodejs.org/download/
https://www.python.org/downloads/windows/
https://bootstrap.pypa.io/ez_setup.py
https://pypi.python.org/pypi/setuptools
https://bitbucket.org/alexandrul/py-bcrypt/downloads

Girder Documentation, Release 1.4.1

Install with pip

To install the Girder distribution from the python package index, simply run

pip install girder

This will install the core Girder server as a site package in your system or virtual environment. At this point, you
might want to check the configuration to change your plugin and logging paths. In order to use the web interface, you
must also install the web client libraries. Girder installs a python script that will automatically build and install these
libraries for you. Just run the following command:

girder-install web

Note: Installing the web client code requires the node package manager (npm). See the System Prerequisites section
for instructions on installing nodejs.

Note: If you installed Girder into your system site—packages, you may need to run the above commands as root.

Once this is done, you are ready to start using Girder as described in this section: Run.

Install from Git Checkout

Obtain the Girder source code by cloning the Git repository on GitHub:

git clone https://github.com/girder/girder.git
cd girder

To run the server, you must install some external Python package dependencies:

’pip install -r requirements.txt

To build the client-side code project, cd into the root of the repository and run:

’npm install

This will run multiple Grunt tasks, to build all of the Javascript and CSS files needed to run the web client application.

Run

To run the server, first make sure the Mongo daemon is running. To manually start it, run:

’mongod &

If you installed with pip, you will have the girder-server executable on your path and can simply call

‘girder—server

-0r -

If you checked out the source tree, you can start the server with the following command, which will have identical
behavior:

python -m girder

Then open http://localhost:8080/ in your web browser, and you should see the application.

8 Chapter 3. Table of contents

https://github.com
http://gruntjs.com
http://localhost:8080/

Girder Documentation, Release 1.4.1

Initial Setup

The first user to be created in the system is automatically given admin permission over the instance, so the first thing
you should do after starting your instance for the first time is to register a user. After that succeeds, you should see a
link appear in the navigation bar that says Admin console.

The next recommended action is to enable any plugins you want to run on your server. Click the Admin console
navigation link, then click P1ugins. Here, you can turn plugins on or off. Whenever you change the set of plugins
that are enabled, you must restart the CherryPy server for the change to take effect. For information about specific
plugins, see the Plugins section.

After you have enabled any desired plugins and restarted the server, the next recommended action is to create an
Assetstore for your system. No users can upload data to the system until an assetstore is created, since all files in
Girder must reside within an assetstore. See the Assetstores section for a brief overview of Assetstores.

Installing third-party plugins

Girder ships with a standard library of plugins that can be enabled in the admin console, but it’s common for Girder
installations to require additional third-party plugins to be installed. If you’re using a pip installed version of Girder,
you can simply use the following command:

girder-install plugin /path/to/your/plugin

That command will expose the plugin to Girder and build any web client targets associated with the plugin. You will
still need to enable it in the console and then restart the Girder server before it will be active.

Note: The girder—install plugin command can also accept a list of plugins to be installed. You may need
to run it as root if you installed Girder at the system level.

For development purposes it is possible to symlink (rather than copy) the plugin directory. This is accomplished with
the —s or ——symlink flag:

girder—install -s plugin /path/to/your/plugin

Enabled plugins installed with —s may be edited in place and those changes will be reflected after a server restart.

3.1.3 Deploy

There are many ways to deploy Girder into production. Here is a set of guides on how to deploy Girder to several
different platforms.

Heroku

This guide assumes you have a Heroku account and have installed the Heroku toolbelt.

Girder contains the requisite Procfile, buildpacks, and other configuration to be deployed on Heroku. To deploy Girder
to your Heroku space, run the following commands. We recommend doing this on your own fork of Girder to keep
any customization separate.

cd /path/to/girder/tree

heroku apps:create your_apps_name_here

heroku config:add BUILDPACK_URL=https://github.com/ddollar/heroku-buildpack-multi.git
heroku addons:add mongolab

wr r U r

git remote add heroku git@heroku.com:your_apps_name_here.git

3.1. Administrator Documentation 9

http://www.cherrypy.org
https://www.heroku.com

Girder Documentation, Release 1.4.1

$ git push heroku
$ heroku open

You should now see your Girder instance running on Heroku. Congratulations!

Reverse Proxy
In many cases, it is useful to route multiple web services from a single server. For example, if you have a server

accepting requests at www . example . com, you may want to forward requests to www . example.com/girder to
a Girder instance listening on port 9000.

Apache

When using Apache, configure Apache’s mod_proxy to route traffic to these services using a reverse proxy. Add the
following section to your Apache config:

<VirtualHost »*:80>
ProxyPass /girder http://localhost:9000
ProxyPassReverse /girder http://localhost:9000
</VirtualHost>

Nginx

Nginx can be used by adding a block such as:

location /girder/ {
proxy_set_header Host Sproxy_ host;
proxy_set_header X-Forwarded-For Sproxy_add_x_forwarded_for;
proxy set_ header X-Forwarded-Host Shost;
proxy_set_header X-Forwarded-Proto S$scheme;
proxy pass http://localhost:9000/;
Must set the following for SSE notifications to work
proxy_ buffering ;
proxy_cache ;
proxy_ set_header Connection '';
proxy_http_version 1.1;
chunked_transfer encoding ;
proxy read_timeout 600s;
proxy_send_timeout 600s;

Girder Settings

In such a scenario, Girder must be configured properly in order to serve content correctly. This can be accomplished by
setting a few parameters in your local configuration file at gi rder/conf/girder.local.cfg. In this example,
we have the following:

[global]

server.socket_host: "0.0.0.0"
server.socket_port: 9000
tools.proxy.on: True

[server]

10 Chapter 3. Table of contents

http://httpd.apache.org/docs/current/mod/mod_proxy.html

Girder Documentation, Release 1.4.1

api_root: "/girder/api/v1l"
static_root: "/girder/static"

Note: If your chosen proxy server does not add the appropriate X-Forwarded-Host header (containing the
host used in http requests, including any non-default port to proxied requests), the tools.proxy.base and
tools.proxy.local configuration options must also be set in the [global] section as:

tools.proxy.base: "http://www.example.com/girder"
tools.proxy.local: ""

After modifying the configuration, always remember to rebuild Girder by changing to the Girder directory and issuing
the following command:

$ npm install

Docker Container

Every time a new commit is pushed to master, Docker Hub is updated with a new image of a docker container running
Girder. This container exposes Girder at port 8080 and requires the database URL to be passed in as an option. For
more information, see the Docker Hub Page. Since the container does not run a database, you’ll need to run a command
in the form:

‘$ docker run -p 8080:8080 girder/girder —-d mongodb://db-server-external-ip:27017/girder

Google Container Engine

Google Container Engine lets you host and manage Docker containers on Google Compute Engine instances. Before
following the instructions here, follow Google’s tutorial for setting up Wordpress, which will make the following steps
more clear.

We will assume you have performed gcloud auth login and the following environment variables set:

$ export ZONE=us-centrall-a
$ export CLUSTER_NAME=hello-girder

Start a new project in Google Developers Console (here we assume its identifier is my—-girder). Set this as your
active project with

’$ gcloud config set project my-girder ‘

Now click the Container Engine menu item on the left of the console to initialize the container service, then create a
new cluster with:

‘$ gcloud preview container clusters create $CLUSTER_NAME --num-nodes 1 —-machine-type ni—standard—Z-

This will create two instances, a master and a worker:

$ gcloud compute instances list --zone S$ZONE

NAME ZONE MACHINE_TYPE INTERNAL_IP EXTERNAL_IP STATUS
k8s-hello-girder-master us-centrall-a nl-standard-2 X.X.X.X X.X.X.X RUNNING
k8s-hello-girder—-node-1 us-centrall-a nl-standard-2 X.X.X.X X.X.X.X RUNNING

The worker will hold our Docker containers, MongoDB and Girder. The worker needs some extra storage than the
standard 10GB, so let’s make a new 100GB storage drive and attach it to our worker:

3.1. Administrator Documentation 11

https://registry.hub.docker.com/u/girder/girder/
https://cloud.google.com/container-engine/docs/hello-wordpress

Girder Documentation, Release 1.4.1

$ gcloud compute disks create mongodb —--size 100GB --zone $ZONE
$ gcloud compute instances attach-disk k8s-hello-girder-node-1 --disk mongodb --zone $Z(QNE

Now we need to ssh into our worker node, which you can do from the Developers Console, and mount the disk to
/data. First we find the name of the device, here sdb.

user_name@k8s-hello-girder-node-1:~$ 1ls -1 /dev/disk/by-id/google-x*

lrwxrwxrwx 1 root root 9 Nov 22 20:31 /dev/disk/by-id/google-mongodb -> ../../sdb
lrwxrwxrwx 1 root root 9 Nov 22 19:32 /dev/disk/by-id/google-persistent-disk-0 -> ../.]/sda
lrwxrwxrwx 1 root root 10 Nov 22 19:32 /dev/disk/by-id/google-persistent-disk-0O-partl -3 ../../sdal

Then we create the directory and mount the drive:

user_name@k8s-hello-girder-node-1:~$ sudo mkdir /data
user_name@k8s-hello-girder-node-1:~$ sudo /usr/share/google/safe_format_and_mount -m "mkfs.extd -F"

Now we are ready to install our pod, which is a collection of containers that work together. Save the following yaml
specification for our MongoDB/Girder pod to pod. yaml:

version: vlbetal
id: girder
kind: Pod
desiredState:
manifest:
version: vlbeta2
containers:
name: mongodb
image: dockerfile/mongodb
ports:
name: db
containerPort: 27017
volumeMounts:
name: data
mountPath: /data/db
name: application
image: girder/girder
ports:
name: app
containerPort: 8080
hostPort: 80
volumes:
name: data
source:
hostDir:
path: /data/db

Note that we are letting MongoDB use the host’s /data directory, which will have more space and will persist even
if our containers are shut down and restarted. Start the pod back at your local command line with:

$ gcloud preview container pods —--cluster—-name SCLUSTER_NAME create girder —--zone S$ZONE |-—-config-file

You can check the status of your pod with:

12 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

$ gcloud preview container pods —--cluster—-name S$SCLUSTER_NAME describe girder --zone S$ZONE
ID Image (s) Host
girder dockerfile/mongodb,girder/girder k8s-hello-girder-node-1.c.hello-girder.int

Add a firewall rule to expose port 80 on your worker:

ernal/X.X.X.:

$ gcloud compute firewall-rules create hello-girder-node-80 --allow tcp:80 ——target—tagslf k8s-hello-g:

After everything starts, which may take a few minutes, you should be able to visit your Girder instance at
http://X.X.X.X where X.X.X.X is the IP address in the container description above. Congratulations, you
have a full Girder instance available on Google Container Engine!

3.1.4 Configuration
In many cases, Girder will work with default configuration whether installed via pip or from a source checkout or
tarball. That said, the Girder config file can be set at the following locations (ordered by precedent):
1. The path specified by the environment variable GIRDER_CONFIG.
~/.girder/girder.cfg
/etc/girder.cfg
/path/to/girder/package/conf/girder.local.cfg

A

/path/to/girder/package/conf/girder.dist.cfg

Logging

Much of Girder’s output is placed into the error or info log file. By default, these logs are stored in ~/.girder/logs. To
set the Girder log root or error and info logs specifically, set the log_root, error_log_file, and/or info_log_file variables
in the logging config group. If log_root is set, error and info will be set to error.log and info.log within log_root
respectively. The _log_file variables will override that setting and are absolute paths.

Server thread pool

Girder can handle multiple requests at one time. The maximum number of simultaneous requests is set with the
server.thread_pool value in the global config group. Once this many connections have been made to Girder, additional
connections will block until existing connections finish.

Most operations on Girder are quick, and therefore do not use up a connection for a long duration. Some connections,
notably calls to the notification/stream endpoint, can block for long periods. If you expect to have many clients, either
increase the size of the thread pool or switch to using intermittent polling rather than long-duration connections.

Each available thread uses up some additional memory and requires internal socket or handle resources. The exact
amount of memory and resources is dependent on the host operating system and the types of queries made to Girder.
As one benchmark from an Ubuntu server, each additional available but unused connection requires roughly 25 kb of
memory. If all connections are serving notification streams, each uses around 50 kb of memory.

Changing file limits

If all server threads are in use, additional attempts to connect will use a file handle while waiting to be processed.
The number of open files is limited by the operating system, and may need to be increased. This limit affects actual
connections, pending connections, and file use.

3.1. Administrator Documentation 13

Girder Documentation, Release 1.4.1

The method of changing file limits varies depending on your operating system. If your operating system is not listed
here, try a web search for “Open Files Limit” along with your OS’s name.

Linux You can query the current maximum number of files with the command:

ulimit -Sn

To increase this number for all users, as root or with sudo privileges, edit /etc/security/limits.conf and
append the following lines to the end of the file:

* soft nofile 32768
* hard nofile 32768

Save and close the file. The user running the Girder server will need to logout and log back in and restart the Girder
server for the new limits to take effect.

This raises the limits for all users on the system. You can limit this change to just the user that runs the Girder server.
See the documentation for /etc/security/limits.conf for details.

3.2 User Documentation

3.2.1 User Guide

Girder is a Data Management Toolkit. It is a complete back-end (server side) technology that can be used with other
applications via its RESTful API, or it can be used via its own front-end (client side web pages and JavaScript).

Girder is designed to be robust, fast, scalable, extensible, and easy to understand.
Girder is built in Python.

Girder is open source, licensed under the Apache License, Version 2.0.

Document Conventions

This User Guide is written for end-users of Girder, rather than developers. If you have suggestions or questions about
this documentation, feel free to contact us on Github or email us.

Girder specific entities will be formatted 1like this.

Concepts

Users

Like in many systems, Users in Girder correspond to the identity of a user of the system. It is possible to use
many features of Girder anonymously (that is, without being logged in as a registered user), but typically in order to
make changes to the system, a user must be logged in as their corresponding User account. Users can be granted
permissions on resources in the system directly, and can belong to Groups.

Groups

Groups group together Users. Users can belong to any number of Groups, and usually join by being invited and
accepting the invitation. One of the main purposes of Groups is to allow role-based access control; resources can
grant access to Groups rather than just individual users, such that changing access to sets of resources can be managed

14 Chapter 3. Table of contents

http://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/girder/girder
mailto:kitware@kitware.com

Girder Documentation, Release 1.4.1

simply by changing Group membership. See the Permissions section for more information about group-based access
control.

Collections

Collections are the top level objects in the data organization hierarchy. Within each Collection, there can be
many Folders, and the Collection itself is also an access controlled resource. Typically Collections are
used to group data that share something in common, such as what project the data are used for, or what institution they
belong to.

Folders

A Girder Folder is the common software concept of a folder, namely a hierarchically nested organizational structure.
Girder Folders can contain nothing (although this may not be particularly useful), other Folders, Items, or a
combination of Folders and Items. Folders in Girder have permissions set on them, and the Ttems within
them inherit permissions from their containing Folders.

Items

A Girder Item is the basic unit of data in the system. Items live beneath Folders and contain O or more Files.
Items in Girder do not have permissions set on them, they inherit permissions by virtue of living in a Folder (which
has permissions set on it). Most Items contain a single File, except in special cases where multiple files make up
a single piece of data.

Each Item may contain any number of arbitrary key/value pairs, termed metadata. Metadata keys must be non-empty
strings and must not contain a period (‘.”) or begin with a dollar sign (‘$’). Metadata values can be anything, including
strings, numeric values, and even arbitrary JSON objects.

Files

Files represent raw data objects, just like the typical concept of files in a filesystem. Files exist within Items,
typically with a one-to-one relationship between the File and its containing Item. Files in Girder are much like
files on a filesystem, but they are actually more abstract. For instance, some Files are simply links to external URLs.
All Files that are not external links must be contained within an Assetstore.

Assetstores

Assetstores are an abstraction representing a repository where the raw bytes of Files are actually stored. The
Assetstores known to a Girder instance may only be set up and managed by administrator Users.

In the core of Girder, there are three supported Assetstore types:
¢ Filesystem

Files uploaded into this type of Asset st ore will be stored on the local system filesystem of the server using content-
addressed storage. Simply specify the root directory under which files should be stored.

Note: If your Girder environment has multiple different application servers and you plan to use the Filesystem
assetstore type, you must set the assetstore root to a location on the filesystem that is shared between all of the
application servers.

3.2. User Documentation 15

Girder Documentation, Release 1.4.1

* GridFS

This Assetstore type stores files directly within your Mongo database using the GridFS model. You must specify
the database name where files will be stored; for now, the same credentials will be used for this database as for the
main application database.

This database type has the advantage of automatically scaling horizontally with your DBMS. However, it is marginally
slower than the Filesystem assetstore type in a typical single-server use case.

* S3

This Assetstore type stores files in an Amazon S3 bucket. You must provide the bucket name, an optional path
prefix within the bucket, and authentication credentials for the bucket. When using this assetstore type, Girder acts
as the broker for the data within S3 by authorizing the user agent via signed HTTP requests. The primary advantage
of this type of assetstore is that none of the actual bytes of data being uploaded and downloaded ever go through the
Girder system, but instead are sent directly between the client and S3.

If you want to use an S3 assetstore, the bucket used must support CORS requests. This can be edited by navigat-
ing to the bucket in the AWS S3 console, selecting Properties, then Permissions, and then clicking Edit CORS
Configuration. The below CORS configuration is sufficient for Girder’s needs:

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
<CORSRule>
<AllowedOrigin>*</AllowedOrigin>
<AllowedMethod>GET</AllowedMethod>
<AllowedMethod>PUT</AllowedMethod>
<AllowedMethod>P0ST</AllowedMethod>
<MaxAgeSeconds>3000</MaxAgeSeconds>
<ExposeHeader>ETag</ExposeHeader>
<AllowedHeader>x*</AllowedHeader>
</CORSRule>
</CORSConfiguration>

Permissions

Permission Levels There are four levels of permission a User can have on a resource. These levels are in a strict
hierarchy with a higher permission level including all of the permissions below it. The levels are:

1. No permission (cannot view, edit, or delete a resource)

2. READ permission (can view and download resources)

3. WRITE permission (includes READ permission, can edit the properties of a resource)

4. ADMIN permission (includes READ and WRITE permission, can delete the resource and also control access on
it)

A site administrator always has permission to take any action.

Permission Model Permissions are resolved at the level of a User, i.e., for any User, an attempt to take a certain
action will be allowed or disallowed based on the permissions for that User, as a function of the resource, the
operation, the permissions set on that resource for that User, and the permissions set on that resource by any Groups
the User is a member of.

Permissions are always additive. That is, given a User with a certain permission on a resource, that permission can
not be taken away from the User by addition of other permissions to the system, but only through removing existing
permissions to that User or removing that User from a Group. Once again, a site admin always has permission to
take any action.

16 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

Collections Collections canbe Public (meaning viewable even by anonymous users) or Private (meaning
viewable only by those with READ access). Collections can have permissions set on them at the individual User
level and Group level, meaning that a given User or Group can have READ, WRITE, or ADMIN permissions set on
the Collection.

Folders Folders canbe Public (meaning viewable even by anonymous users) or Private (meaning viewable
only by those with READ access). Folders can have permissions set on them at the individual User level and
Group level, meaning that a given User or Group can have READ, WRITE, or ADMIN permissions set on the
Folder. Folders inherit permissions from their parent Folder.

Items Items always inherit their permissions from their parent Folder. Each access-controlled resource (e.g.,
Folder, Collection) has a list of permissions granted on it, and each item in that list is a mapping of either
Users to permission level or Groups to permission level. This is best visualized by opening the “Access control”
dialog on a Folder in the hierarchy. The actual permission level that a User has on that resource is defined as: the
maximum permission level available based on the permissions granted to any Groups that the User is member of,
or permissions granted to that User specifically.

Groups For access control, Groups can be given any level of access to a resource that an individual User can, and
this is managed at the level of the resource in question.

For permissions on Groups themselves, Public Groups are viewable (READ permission) to anyone, even anony-
mous users. Private Groups are not viewable or even listable to any Users except those that are members of the
Group, or those that have been invited to the Group.

Groups have three levels of roles that Users can have within the Group. They can be Members, Moderators
(also indicates that they are Members), and Administrators (also indicates that they are Members).

Users that are not Members of a group can request to become Members of a Group if that Group is Public.

Members of a Group can see the membership list of the Group, including roles, and can see pending requests and
invitations for the group. If a User has been invited to a Group, they have Membe r access to the Group even before
they have accepted the invitation. A Member of a Group can leave the group, at which point they are no longer
Members of the Group.

Moderators of a Group have all of the abilities of Group Members. Moderators can also invite Users
to become Members, can accept or reject a request by a User to become a Member, can remove Members or
Moderators from the Group, and can edit the Group which includes changing the name and description and
changing the Public/Private status of the Group.

Administrators of a Group have all of the abilities of Group Moderators. Administrators can also
delete the Group, promote a Member to Moderator or Administrator, demote an Administrator or
Moderator to Member, and remove any Member, Moderator, or Administrator from the Group.

The creator of a Group is an Administrator of a group. Any logged in User can create a Group.

User Users have ADMIN access on themselves, and have READ access on other Users.

3.2. User Documentation 17

Girder Documentation, Release 1.4.1

3.3 Developer Documentation

3.3.1 API Documentation

RESTful API

Clients access Girder servers uniformly via its RESTful web API. By providing a single, stable, consistent web API,
it is possible to write multiple interchangeable clients using different technologies.

When a Girder instance is deployed, it typically also serves a page that uses Swagger to document all available RESTful
endpoints in the web API and also provide an easy way for users to execute those endpoints with parameters of their
choosing. In this way, the Swagger page is just the simplest and lightest client application for Girder. This page is
served out of the path /api under the root path of your Girder instance.

Models

In Girder, the model layer is responsible for actually interacting with the underlying database. Model classes are
where the documents representing resources are actually saved, retrieved, and deleted from the DBMS. Validation of
the resource documents is also done in the model layer, and is invoked each time a document is about to be saved.

Typically, there is a model class for each resource type in the system. These models are loaded as singletons for
efficiency, and can be accessed in REST resources or other models by invoking self.model (' foo’), where foo
is the name of the model. For example:

groups = self.model ('group') .list (user=self.getCurrentUser())

All models that require the standard access control semantics should extend the AccessControlledModel class. Other-
wise, they should extend the Model class.

All model classes must have an initialize method in which they declare the name of their corresponding Mongo
collection, as well as any collection indices they require. For example:

from girder.models.model base import Model

class Cat (Model) :
def initialize(self):
self.name = 'cat_collection'

The above model singleton could then be accessed via:

self.model ('cat")

If you wish to use models in something other than a REST Resource or Model, either mixin or instantiate the Mode-
lImporter class.

Model Helper Functions

girder.models.getDbConfig ()
Get the database configuration values from the cherrypy config.

girder.models.getDbConnection (uri=None, replicaSet=None, autoRetry=True, **kwargs)
Get a MongoClient object that is connected to the configured database. We lazy-instantiate a module-level
singleton, the MongoClient objects manage their own connection pools internally. Any extra kwargs you pass
to this method will be passed through to the MongoClient.

Parameters

18 Chapter 3. Table of contents

https://helloreverb.com/developers/swagger

Girder Documentation, Release 1.4.1

* uri —if specified, connect to this mongo db rather than the one in the config.
* replicaSet —if uri is specified, use this replica set.

* autoRetry (bool) - if this connection should automatically retry operations in the event
of an AutoReconnect exception. If you’re testing the connection, set this to False. If dis-
abled, this also will not cache the mongo client, so make sure to only disable if you’re testing
a connection.

Model Base

class girder.models.model_base.AccessControlledModel
Any model that has access control requirements should inherit from this class. It enforces permission checking
in the load() method and provides convenient methods for testing and requiring user permissions. It also provides
methods for setting access control policies on the resource.

copyAccessPolicies (src, dest, save=False)
Copies the set of access control policies from one document to another.

Parameters

* src (dict) - The source document to copy policies from.

* dest (dict) — The destination document to copy policies onto.

* save (bool)— Whether to save the destination document after copying.
Returns The modified destination document.

filter (doc, user, additionalKeys=None)
Filter this model for the given user according to the user’s access level. Also adds the special _accessLevel
field to the document to indicate the user’s highest access level. This filters a single document that the user
has at least read access to. For filtering a set of documents, see filterResultsByPermission().

Parameters
* doc (dict or None)-The document of this model type to be filtered.
* user (dict or None)- The current user for whom we are filtering.

* additionalKeys (list, tuple, or None)- Any additional keys that should be
included in the document for this call only.

Returns The filtered document (dict).

filterResultsByPermission (cursor, user, level, limit=0, offset=0, removeKeys=())
Given a database result cursor, this generator will yield only the results that the user has the given level of
access on, respecting the limit and offset specified.

Parameters
* cursor — The database cursor object from “find()”.
* user — The user to check policies against.
¢ level (AccessType) — The access level.
e limit (int) - The max size of the result set.
e offset (int)— The offset into the result set.

* removeKeys (1ist) — List of keys that should be removed from each matching docu-
ment.

3.3. Developer Documentation 19

Girder Documentation, Release 1.4.1

getAccessLlevel (doc, user)
Return the maximum access level for a given user on a given object. This can be useful for alerting the
user which set of actions they are able to perform on the object in advance of trying to call them.

Parameters
* doc - The object to check access on.
* user — The user to get the access level for.
Returns The max AccessType available for the user on the object.

getFullAccessList (doc)

Return an object representing the full access list on this document. This simply includes the names of the
users and groups with the ACL.

If the document contains references to users or groups that no longer exist, they are simply removed from
the ACL, and the modified ACL is persisted at the end of this method if any removals occurred.

Parameters doc (dict) — The document whose ACL to return.
Returns A dict containing users and groups keys.

hasAccess (doc, user=None, level=0)

This method looks through the object’s permission set and determines whether the user has the given
permission level on the object.

Parameters
* doc (dict)— The document to check permission on.
* user (dict)— The user to check against.
¢ level (AccessType) — The access level.

Returns Whether the access is granted.

load (id, level=2, user=None, objectld=True, force=False, fields=None, exc=False)
Override of Model.load to also do permission checking.

Parameters
e id(str or ObjectId)- The id of the resource.
* user (dict or None) - The user to check access against.
* level (AccessType) — The required access type for the object.

* force (bool) — If you explicitly want to circumvent access checking on this resource,
set this to True.

* objectId (bool)— Whether the id should be coerced to Objectld type.

e fields — The subset of fields to load from the returned document, or None to return the
full document.

* exc (bool) - If not found, throw a ValidationException instead of returning None.
Raises ValidationException — If an invalid Objectld is passed.
Returns The matching document, or None if no match exists.

requireAccess (doc, user=None, level=0)
This wrapper just provides a standard way of throwing an access denied exception if the access check fails.

20 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

setAccessList (doc, access, save=False)
Set the entire access control list to the given value. This also saves the resource in its new state to the
database.

Parameters
* doc (dict) — The resource to update.
* access (dict)— The new access control list to set on the object.
* save (boolean)— Whether to save after updating.

Returns The updated resource.

setGroupAccess (doc, group, level, save=False)
Set group-level access on the resource.

Parameters
¢ doc (dict) — The resource document to set access on.
* group (dict)— The group to grant or remove access to.

* level (AccessType or None)— What level of access the group should have. Set to
None to remove all access for this group.

* save (bool)— Whether to save the object to the database afterward. Set this to False if
you want to wait to save the document for performance reasons.

Returns The updated resource document.

setPublic (doc, public, save=False)
Set the flag for public read access on the object.

Parameters
* doc (dict)— The document to update permissions on.
* public (bool) - Flag for public read access.

* save (bool)— Whether to save the object to the database afterward. Set this to False if
you want to wait to save the document for performance reasons.

Returns The updated resource document.

setUserAccess (doc, user, level, save=Fualse)
Set user-level access on the resource.

Parameters
¢ doc (dict)— The resource document to set access on.
* user (dict) — The user to grant or remove access to.

¢ level (AccessType or None)— What level of access the user should have. Set to
None to remove all access for this user.

* save (bool) — Whether to save the object to the database afterward. Set this to False if
you want to wait to save the document for performance reasons.

Returns The modified resource document.

textSearch (query, user=None, filters=None, limit=0, offset=0, sort=None, fields=None)
Custom override of Model.textSearch to also force permission-based filtering. The parameters are the
same as Model.textSearch.

Parameters user — The user to apply permission filtering for.

3.3.

Developer Documentation 21

Girder Documentation, Release 1.4.1

exception girder.models.model_base.AccessException (message)
Represents denial of access to a resource.

exception girder.models.model_base.GirderException (message, identifier=None)
Represents a general exception that might occur in regular use. From the user perspective, these are failures,
but not catastrophic ones. An identifier can be passed, which allows receivers to check the exception without
relying on the text of the message. It is recommended that identifiers are a dot-separated string consisting of the
originating python module and a distinct error. For example, ‘girder.model.assetstore.no-current-assetstore’.

class girder.models.model_base.Model
Model base class. Models are responsible for abstracting away the persistence layer. Each collection in the
database should have its own model. Methods that deal with database interaction belong in the model layer.

ensureIndex (index)
Like ensurelndices, but declares just a single index rather than a list of them.

ensurelndices (indices)
Subclasses should call this with a list of strings representing fields that should be indexed in the database
if there are any. Otherwise, it is not necessary to call this method. Elements of the list may also be a list or
tuple, where the second element is a dictionary that will be passed as kwargs to the pymongo create_index
call.

ensureText Index (index, language="english’)
Call this during initialize() of the subclass if you want your model to have a full-text searchable index.
Each collection may have zero or one full-text index.

Parameters language (str) — The default_language value for the text index, which is used
for stemming and stop words. If the text index should not use stemming and stop words, set
this param to ‘none’.

exposeFields (level, fields)
Expose model fields to users with the given access level. Subclasses should call this in their initialize
method to declare what fields should be exposed to what access levels if they are using the default filter
implementation in this class. Since filtered fields are sets, this method is idempotent.

Parameters
* level (AccessType) — The required access level for the field.
e fields (str, list, or tuple)- A field or list of fields to expose for that level.

filter (doc, user=None, additionalKeys=None)
Filter this model for the given user. This is a default implementation that assumes this model has no notion
of access control, and simply allows all keys under READ access level, and conditionally allows any keys
assigned to SITE_ADMIN level.

Parameters
* doc (dict or None)- The document of this model type to be filtered.
* user (dict or None)- The current user for whom we are filtering.

* additionalKeys (list, tuple, or None)-— Any additional keys that should be
included in the document for this call only.

Returns The filtered document (dict).

filterDocument (doc, allow=None)
This method will filter the given document to make it suitable to output to the user.

Parameters

¢ doc (dict) — The document to filter.

22 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

* allow(List of strings)- The whitelist of fields to allow in the output document.

find (query=None, offset=0, limit=0, timeout=None, fields=None, sort=None, **kwargs)
Search the collection by a set of parameters. Passes any extra kwargs through to the underlying py-
mongo.collection.find function.

Parameters
* query (dict)— The search query (see general MongoDB docs for “find()”)
e offset (int) - The offset into the results
e limit (int)—- Maximum number of documents to return
e sort (List of (key, order) tuples.)— The sort order.
e fields (List of strings)— A mask for filtering result documents by key.
e timeout (int) — Cursor timeout in ms. Default is no timeout.
Returns A pymongo database cursor.

findOne (query=None, fields=None, **kwargs)
Search the collection by a set of parameters. Passes any kwargs through to the underlying py-
mongo.collection.find_one function.

Parameters

* query (dict)— The search query (see general MongoDB docs for “find()”")

e sort (List of (key, order) tuples.)— The sort order.

* fields (List of strings)— A mask for filtering result documents by key.
Returns the first object that was found, or None if none found.

hideFields (level, fields)
Hide a field, i.e. make sure it is not exposed via the default filtering method. Since the filter uses a white
list, it is only ever necessary to call this for fields that were added previously with exposeFields().

Parameters
¢ level (AccessType) — The access level to remove the fields from.
e fields(str, list, or tuple)- The field or fields to remove from the white list.

increment (query, field, amount, **kwargs)
This is a specialization of the update method that atomically increments a field by a given amount. Addi-
tional kwargs are passed directly through to update.

Parameters
* query (dict) — The query selector for documents to update.
e field (str) - The name of the field in the document to increment.
e amount (int or float)- The amount to increment the field by.
initialize()
Subclasses should override this and set the name of the collection as self.name. Also, they should set any
indexed fields that they require.

load (id, objectld=True, fields=None, exc=False)
Fetch a single object from the database using its _id field.

Parameters

e id(string or ObjectId)- The value for searching the _id field.

3.3.

Developer Documentation 23

Girder Documentation, Release 1.4.1

* objectId (bool)— Whether the id should be coerced to Objectld type.

* fields — Fields list to include. Also can be a dict for exclusion. See pymongo docs for
how to use this arg.

* exc (bool) — Whether to raise a ValidationException if there is no document with the
given id.

Returns The matching document, or None.

reconnect ()
Reconnect to the database and rebuild indices if necessary. Users should typically not have to call this
method.

remove (document, **kwargs)
Delete an object from the collection; must have its _id set.

Parameters doc — the item to remove.

removeWithQuery (query)
Remove all documents matching a given query from the collection. For safety reasons, you may not pass
an empty query.

save (document, validate=True, triggerEvents=True)
Create or update a document in the collection. This triggers two events; one prior to validation, and one
prior to saving. Either of these events may have their default action prevented.

Parameters
¢ document (dict) - The document to save.
* validate (bool)— Whether to call the model’s validate() before saving.
* triggerEvents — Whether to trigger events for validate and pre- and post-save hooks.

subtreeCount (doc)
Return the size of the subtree rooted at the given document. In general, if this contains items or folders,
it will be the count of the items and folders in all containers. If it does not, it will be 1. This returns the
absolute size of the subtree, it does not filter by permissions.

Parameters doc (dict) — The root of the subtree.

textSearch (query, offset=0, limit=0, sort=None, fields=None, filters=None)
Perform a full-text search against the text index for this collection.

Parameters
* query (str)— The text query. Will be stemmed internally.
» filters (dict)— Any additional query operators to apply.
Returns A pymongo cursor. It is left to the caller to build the results from the cursor.

update (query, update, multi=True)
This method should be used for updating multiple documents in the collection. This is useful for things
like removing all references in this collection to a document that is being deleted from another collection.

For updating a single document, use the save() model method instead.
Parameters

* query (dict) — The query for finding documents to update. It’s the same format as
would be passed to find().

* update (dict)— The update specifier.

24 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

* multi (bool)— Whether to update a single document, or all matching documents.

validate (doc)
Models should implement this to validate the document before it enters the database. It must return the

document with any necessary filters applied, or throw a ValidationException if validation of the document
fails.

Parameters doc (dict)— The document to validate before saving to the collection.

exception girder.models.model_base.ValidationException (message, field=None)
Represents validation failure in the model layer. Raise this with a message and an optional field property. If one
of these is thrown in the model during a REST request, it will respond as a 400 status.

User

class girder.models.user.User
This model represents the users of the system.

createUser (login, password, firstName, lastName, email, admin=False, public=True)
Create a new user with the given information. The user will be created with the default “Public” and
“Private” folders.

Parameters
* admin (bool)— Whether user is global administrator.
* public (bool)— Whether user is publicly visible.
Returns The user document that was created.

filelList (doc, user=None, path="", includeMetadata=False, subpath=True)
Generate a list of files within this user’s folders.

Parameters
¢ doc — the user to list.
* user — a user used to validate data that is returned.
* path — a path prefix to add to the results.

¢ includeMetadata - if True and there is any metadata, include a result which is the
JSON string of the metadata. This is given a name of metadata[-(number).json that is
distinct from any file within the item.

* subpath - if True, add the user’s name to the path.

filter (user, currentUser)
Preserved override for kwarg backwards compatibility.

getAdmins ()

Helper to return a cursor of all site-admin users. The number of site admins is assumed to be small enough
that we will not need to page the results for now.

remove (user, progress=None, **kwargs)
Delete a user, and all references to it in the database.

Parameters
* user (dict) - The user document to delete.

* progress (girder.utility.progress.ProgressContext or None.) —
A progress context to record progress on.

3.3. Developer Documentation 25

Girder Documentation, Release 1.4.1

search (text=None, user=None, limit=0, offset=0, sort=None)
List all users. Since users are access-controlled, this will filter them by access policy.

Parameters
* text — Pass this to perform a full-text search for users.
* user — The user running the query. Only returns users that this user can see.
* limit — Result limit.
* offset — Result offset.
* sort — The sort structure to pass to pymongo.
Returns Iterable of users.

setPassword (user, password, save=True)
Change a user’s password.

Parameters
* user — The user whose password to change.

» password — The new password. If set to None, no password will be stored for this user.
This should be done in cases where an external system is responsible for authenticating
the user.

subtreeCount (doc, includeltems=True, user=None, level=None)
Return the size of the user’s folders. The user is counted as well.

Parameters
* doc — The user.
e includeItems (bool)— Whether to include items in the subtree count, or just folders.
* user - If filtering by permission, the user to filter against.
* level (AccessLevel) - If filtering by permission, the required permission level.

validate (doc)
Validate the user every time it is stored in the database.

Password

class girder.models.password.Password
This model deals with managing user passwords.

authenticate (user, password)
Authenticate a user.

Parameters

e user (dict) - The user document.

* password (str) — The attempted password.
Returns Whether authentication succeeded (bool).

encryptAndStore (password)

Encrypt and store the given password. The exact internal details and mechanisms used for storage are ab-
stracted away, but the guarantee is made that once this method is called on a password and the returned salt
and algorithm are stored with the user document, calling Password.authenticate() with that user document

and the same password will return True.

26 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

Parameters password (str)— The password to encrypt and store.

Returns {tuple} (salt, hashAlg) The salt to store with the user document and the algorithm used
for secure storage. Both should be stored in the corresponding user document as ‘salt’ and
‘hashAlg’ respectively.

hasPassword (user)

Returns whether or not the given user has a password stored in the database. If not, it is expected that the
user will be authenticated by an external service.

Parameters user (dict) — The user to test.

Returns bool

Token

class girder.models.token.Token
This model stores session tokens for user authentication.

addScope (token, scope)
Add a scope to this token. If the token already has the scope, this is a no-op.

createToken (user=None, days=180, scope=None)

Creates a new token. You can create an anonymous token (such as for CSRF mitigation) by passing “None”
for the user argument.

Parameters
¢ user (dict) - The user to create the session for.
* days (int) — The lifespan of the session in days.

* scope (str or list of str)— Scope or list of scopes this token applies to. By
default, will create a user authentication token.

Returns The token document that was created.

getAllowedScopes (foken)
Return the list of allowed scopes for a given token.

hasScope (token, scope)
Test whether the given token has the given set of scopes. Use this rather than comparing manually, since
this method is backward compatible with tokens that do not contain a scope field.

Parameters
* token (dict) - The token object.

* scope (str or list of str)— A scope or set of scopes that will be tested as a
subset of the given token’s allowed scopes.

girder.models.token.genToken (length=64)
Use this utility function to generate a random string of a desired length.

Group

class girder.models.group.Group
Groups are simply groups of users. The primary use of grouping users is to simplify access control for resources
in the system, but they can be used for other purposes that require groupings of users as well.

3.3. Developer Documentation 27

Girder Documentation, Release 1.4.1

Group membership is stored in the database on the user document only; there is no “users” field in this model.
This is to optimize for the most common use case for querying membership, which involves checking access
control policies, which is always done relative to a specific user. The task of querying all members within a
group is much less common and typically only performed on a single group at a time, so doing a find on the
indexed group list in the user collection is sufficiently fast.

Users with READ access on the group can see the group and its members. Users with WRITE access on
the group can add and remove members and change the name or description. Users with ADMIN access can
promote group members to grant them WRITE or ADMIN access, and can also delete the entire group.

This model uses a custom implementation of the access control methods, because it uses only a subset of its
capabilities and provides a more optimized implementation for that subset. Specifically: read access is implied
by membership in the group or having an invitation to join the group, so we don’t store read access in the access
document as normal. Another constraint is that write and admin access on the group can only be granted to
members of the group. Also, group permissions are not allowed on groups for the sake of simplicity.

addUser (group, user, level=0)
Add the user to the group. Records membership in the group in the user document, and also grants the
specified access level on the group itself to the user. Any group member has at least read access on the
group. If the user already belongs to the group, this method can be used to change their access level within
it.
createGroup (name, creator, description=""*, public=True)
Create a new group. The creator will be given admin access to it.
Parameters
* name (str)— The name of the folder.
* description (str)— Description for the folder.
* public (bool)— Whether the group is publicly visible.
* creator (dict)— User document representing the creator of the group.
Returns The group document that was created.

filter (group, user, accessList=False, requests=False)
Filter a group document for display to the user.

Parameters
e group (dict) — The document to filter.
e user (dict) - The current user.
¢ accessList (bool)— Whether to include the access control list field.
* requests (bool)— Whether to include the requests list field.
Returns The filtered group document.

getAccessLevel (doc, user)
Return the maximum access level for a given user on the group.

Parameters
* doc - The group to check access on.
» user — The user to get the access level for.
Returns The max AccessType available for the user on the object.

getFullRequestList (group)
Return the set of all outstanding requests, filled in with the login and full names of the corresponding users.

28

Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

Parameters group (dict)— The group to get requests for.

getInvites (group, limit=0, offset=0, sort=None)

Return a page of outstanding invitations to a group. This is simply a list of users invited to the group
currently.

Parameters
» group — The group to find invitations for.
e limit — Result set size limit.
* offset — Offset into the results.
* sort — The sort field.

getMembers (group, offset=0, limit=0, sort=None)
Return the list of all users who belong to this group.

Parameters
» group — The group to list members on.
* offset — Offset into the result set of users.
e 1limit — Result set size limit.
e sort — Sort parameter for the find query.
Returns List of user documents.

hasAccess (doc, user=None, level=0)

This overrides the default AccessControlledModel behavior for checking access to perform an optimized
subset of the access control behavior.

Parameters
* doc (dict)— The group to check permission on.
* user (dict) - The user to check against.
¢ level (AccessType) — The access level.
Returns Whether the access is granted.

inviteUser (group, user, level=0)
Invite a user to join the group. Inviting them automatically grants the user read access to the group so that
they can see it. Once they accept the invitation, they will be given the specified level of access.

If the user has requested an invitation to this group, calling this will accept their request and add them to
the group at the access level specified.

joinGroup (group, user)
This method either accepts an invitation to join a group, or if the given user has not been invited to the
group, this will create an invitation request that moderators and admins may grant or deny later.

list (user=None, limit=0, offset=0, sort=None)
Search for groups or simply list all visible groups.

Parameters
* text — Pass this to perform a text search of all groups.
* user — The user to search as.
e 1limit — Result set size limit.

e offset — Offset into the results.

3.3.

Developer Documentation 29

Girder Documentation, Release 1.4.1

¢ sort — The sort direction.

listMembers (group, offset=0, limit=0, sort=None)
List members of the group, with names, ids, and logins.

remove (group, **kwargs)
Delete a group, and all references to it in the database.

Parameters group (dict)— The group document to delete.

removeUser (group, user)
Remove the user from the group. If the user is not in the group but has an outstanding invitation to the
group, the invitation will be revoked. If the user has requested an invitation, calling this will deny that
request, thereby deleting it.

setUserAccess (doc, user, level, save=False)
This override is used because we only need to augment the access field in the case of WRITE access and
above since READ access is implied by membership or invitation.

updateGroup (group)
Updates a group.

Parameters group (dict)— The group document to update

Returns The group document that was edited.

Collection

class girder.models.collection.Collection
Collections are the top level roots of the data hierarchy. They are used to group and organize data that is meant
to be shared amongst users.

createCollection (name, creator, description="*, public=True)
Create a new collection.

Parameters
* name (str)— The name of the collection. Must be unique.
* description (str)— Description for the collection.
e public (bool)— Public read access flag.
* creator (dict)— The user who is creating this collection.
Returns The collection document that was created.

filelist (doc, user=None, path="", includeMetadata=False, subpath=True)
Generate a list of files within this collection’s folders.

Parameters
* doc — the collection to list.
¢ user — a user used to validate data that is returned.
* path — a path prefix to add to the results.

* includeMetadata - if True and there is any metadata, include a result which is the
JSON string of the metadata. This is given a name of metadata[-(number).json that is
distinct from any file within the item.

* subpath —if True, add the collection’s name to the path.

30 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

filter (collection, user=None)
Preserved override for kwarg backwards compatibility.

hasCreatePrivilege (user)
Tests whether a given user has the authority to create collections on this instance. This is based on the
collection creation policy settings. By default, only admins are allowed to create collections.

Parameters user — The user to test.
Returns bool

1list (user=None, limit=0, offset=0, sort=None)
Search for collections with full text search.

remove (collection, progress=None, **kwargs)
Delete a collection recursively.

Parameters
e collection (dict)— The collection document to delete.

* progress (girder.utility.progress.ProgressContext or None.) —
A progress context to record progress on.

setAccessList (doc, access, save=Fualse, recurse=Fualse, user=None,

progress=<girder.utility.progress.ProgressContext object>, setPublic=None)
Overrides AccessControlledModel.setAccessList to add a recursive option. When recurse=True, this will

set the access list on all subfolders to which the given user has ADMIN access level. Any subfolders that
the given user does not have ADMIN access on will be skipped.

Parameters
* doc (collection)— The collection to set access settings on.
¢ access (dict)— The access control list.
* save (bool)— Whether the changes should be saved to the database.

* recurse (bool) — Whether this access list should be propagated to all folders under-
neath this collection.

* user — The current user (for recursive mode filtering).

* progress (girder.utility.progress.ProgressContext) — Progress con-
text to update.

* setPublic (bool or None) — Pass this if you wish to set the public flag on the
resources being updated.

subtreeCount (doc, includeltems=True, user=None, level=None)
Return the size of the folders within the collection. The collection is counted as well.

Parameters
* doc - The collection.
* includeItems (bool)— Whether items should be included in the count.
* user - If filtering by permission, the user to filter against.
* level (AccessLevel) - If filtering by permission, the required permission level.

updateCollection (collection)
Updates a collection.

Parameters collection (dict) - The collection document to update

. Developer Documentation 31

Girder Documentation, Release 1.4.1

Returns The collection document that was edited.

Folder

class girder.models.folder.Folder

Folders are used to store items and can also store other folders in a hierarchical way, like a directory on a
filesystem. Every folder has its own set of access control policies, but by default the access control list is
inherited from the folder’s parent folder, if it has one. Top-level folders are ones whose parent is a user or a
collection.

childFolders (parent, parentType, user=None, limit=0, offset=0, sort=None, filters=None,
**kwargs)
This generator will yield child folders of a user, collection, or folder, with access policy filtering. Passes
any kwargs to the find function.

Parameters
* parent — The parent object.
* parentType ("user’, ’folder’, or ’‘collection’)- The parent type.
* user — The user running the query. Only returns folders that this user can see.
* limit — Result limit.
» offset — Result offset.
* sort — The sort structure to pass to pymongo.
» filters — Additional query operators.

childItems (folder, limit=0, offset=0, sort=None, filters=None, **kwargs)
Generator function that yields child items in a folder. Passes any kwargs to the find function.

Parameters
* folder — The parent folder.
* limit — Result limit.
* offset — Result offset.
* sort — The sort structure to pass to pymongo.

» filters — Additional query operators.

clean (folder, progress=None, **kwargs)

Delete all contents underneath a folder recursively, but leave the folder itself.
Parameters
e folder (dict) — The folder document to delete.

* progress (girder.utility.progress.ProgressContext or None.) —
A progress context to record progress on.

copyFolder (srcFolder, parent=None, name=None, description=None, parentType=None, pub-

lic=None, creator=None, progress=None, firstFolder=None)
Copy a folder, including all child items and child folders.

Parameters
* srcFolder (dict) — the folder to copy.

e parent (dict)— The parent document. Must be a folder, user, or collection.

32

Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

* name (str)— The name of the new folder. None to copy the original name.

* description (str) — Description for the new folder. None to copy the original de-
scription.

* parentType (str)— What type the parent is: (‘folder’ | ‘user’ | ‘collection’)

e public (bool, None, or ’original’.) — Public read access flag. None to in-
herit from parent, ‘original’ to inherit from original folder.

* creator (dict) — user representing the creator of the new folder.

* progress (girder.utility.progress.ProgressContext or None.) —
a progress context to record process on.

» firstFolder - if not None, the first folder copied in a tree of folders.
Returns the new folder document.

copyFolderComponents (srcFolder, newFolder, creator, progress, firstFolder=None)
Copy the items, subfolders, and extended data of a folder that was just copied.

Parameters
* srcFolder (dict) — the original folder.
¢ newFolder (dict) - the new folder.
* creator (dict) — user representing the creator of the new folder.

* progress (girder.utility.progress.ProgressContext or None.) —
a progress context to record process on.

* firstFolder —if not None, the first folder copied in a tree of folders.
Returns the new folder document.

countFolders (folder, user=None, level=None)
Returns the number of subfolders within the given folder. Access checking is optional; to circumvent
access checks, pass level=None.

Parameters
* folder (dict)— The parent folder.
* user (dict or None)- If performing access checks, the user to check against.
* level - The required access level, or None to return the raw subfolder count.

countItems (folder)
Returns the number of items within the given folder.

createFolder (parent, name, description="*, parentType="folder’, public=None, creator=None, al-

lowRename=False, reuseExisting=False)
Create a new folder under the given parent.

Parameters
* parent (dict)— The parent document. Should be a folder, user, or collection.
¢ name (str)— The name of the folder.
e description (str)— Description for the folder.
* parentType (str)— What type the parent is: (‘folder’ | ‘user’ | ‘collection’)
e public (bool or None to inherit from parent)— Public read access flag.

* creator (dict) — User document representing the creator of this folder.

. Developer Documentation 33

Girder Documentation, Release 1.4.1

* allowRename (bool) — if True and a folder or item of this name exists, automatically
rename the folder.

* reuseExisting (bool) — If a folder with the given name already exists under the
given parent, return that folder rather than creating a new one.

Returns The folder document that was created.

filelList (doc, user=None, path="", includeMetadata=False, subpath=True)
Generate a list of files within this folder.

Parameters
* doc - The folder to list.
* user — The user used for access.
* path (str)— A path prefix to add to the results.

* includeMetadata (bool) —if True and there is any metadata, include a result which
is the JSON string of the metadata. This is given a name of metadata[-(number).json that
is distinct from any file within the folder.

* subpath (boo1l) —if True, add the folder’s name to the path.

Returns Iterable over files in this folder, where each element is a tuple of (path name of the file,
stream function with file data).

Return type generator(str, func)

filter (folder, user)
Preserved override for kwarg backwards compatibility.

getSizeRecursive (folder)
Calculate the total size of the folder by recursing into all of its descendant folders.

load (id, level=2, user=None, objectld=True, force=False, fields=None, exc=False)
We override load in order to ensure the folder has certain fields within it, and if not, we add them lazily at
read time.

Parameters
e id(string or ObjectId)- The id of the resource.
* user (dict or None)- The user to check access against.
* level (AccessType) — The required access type for the object.

» force (bool) - If you explicitly want to circumvent access checking on this resource,
set this to True.

move (folder, parent, parentType)
Move the given folder from its current parent to another parent object. Raises an exception if folder is an
ancestor of parent.

Parameters
* folder (dict) — The folder to move.
* parent — The new parent object.
* parentType (str)— The type of the new parent object (user, collection, or folder).

parentsToRoot (folder, curPath=None, user=None, force=False, level=0)
Get the path to traverse to a root of the hierarchy.

Parameters folder (dict) — The folder whose root to find

34 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

Returns an ordered list of dictionaries from root to the current folder

remove (folder, progress=None, **kwargs)
Delete a folder recursively.

Parameters
¢ folder (dict) — The folder document to delete.

* progress (girder.utility.progress.ProgressContext or None.) —
A progress context to record progress on.

setAccessList (doc, access, save=False, recurse=Fulse, user=None,

progress=<girder.utility.progress.ProgressContext object>, setPublic=None)
Overrides AccessControlledModel.setAccessList to add a recursive option. When recurse=True, this will

set the access list on all subfolders to which the given user has ADMIN access level. Any subfolders that
the given user does not have ADMIN access on will be skipped.

Parameters
* doc (folder)— The folder to set access settings on.
¢ access (dict)— The access control list.
* save (bool)— Whether the changes should be saved to the database.

* recurse (bool) — Whether this access list should be propagated to all subfolders un-
derneath this folder.

* user — The current user (for recursive mode filtering).

* progress (girder.utility.progress.ProgressContext) — Progress con-
text to update.

* setPublic (bool or None) — Pass this if you wish to set the public flag on the
resources being updated.

setMetadata (folder, metadata)
Set metadata on a folder. A rest exception is thrown in the cases where the metadata JSON object is badly
formed, or if any of the metadata keys contains a period (*.").

Parameters
e folder (dict) — The folder to set the metadata on.

* metadata (dict)— A dictionary containing key-value pairs to add to the folder’s meta
field

Returns the folder document

subtreeCount (folder, includeltems=True, user=None, level=None)
Return the size of the subtree rooted at the given folder. Includes the root folder in the count.

Parameters
e folder (dict)— The root of the subtree.
* includeItems (bool)— Whether to include items in the subtree count, or just folders.
* user - If filtering by permission, the user to filter against.
e level (AccessLevel) — If filtering by permission, the required permission level.

updateFolder (folder)
Updates a folder.

Parameters folder (dict)— The folder document to update

3.3.

Developer Documentation 35

Girder Documentation, Release 1.4.1

Returns The folder document that was edited.

validate (doc, allowRename=False)
Validate the name and description of the folder, ensure that it is associated with a valid parent and that it
has a unique name.

Parameters
¢ doc — the folder document to validate.

¢ allowRename - if True and a folder or item exists with the same name, rename the
folder so that it is unique.

Returns the validated folder document.

Item

class girder.models.item.Item
Items are leaves in the data hierarchy. They can contain O or more files within them, and can also contain
arbitrary metadata.

checkConsistency (stage, progress=None)
Check all of the items and make sure they are valid. This operates in stages, since some actions should
be done before other models that rely on items and some need to be done after. The stages are: * count -
count how many items need to be checked. * remove - remove lost items * verify - verify and fix existing
items

Parameters
* stage — which stage of the check to run. See above.
* progress — an optional progress context to update.

Returns numltems: number of items to check or processed, numChanged: number of items
changed.

childFiles (item, limit=0, offset=0, sort=None, **kwargs)
Returns child files of the item. Passes any kwargs to the find function.

Parameters
e item - The parent item.
* limit — Result limit.
» offset — Result offset.
* sort — The sort structure to pass to pymongo.

copyItem (srcltem, creator, name=None, folder=None, description=None)
Copy an item, including duplicating files and metadata.

Parameters
* srcItem (dict) - the item to copy.
* creator — the user who will own the copied item.
* name (str)— The name of the new item. None to copy the original name.

* folder — The parent folder of the new item. None to store in the same folder as the
original item.

36 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

* description (str)— Description for the new item. None to copy the original descrip-
tion.

Returns the new item.

createltem (name, creator, folder, description="", reuseExisting=False)
Create a new item. The creator will be given admin access to it.

Parameters
* name (str)— The name of the item.
* description (str)— Description for the item.
* folder — The parent folder of the item.
* creator (dict) — User document representing the creator of the item.

* reuseExisting (bool)-If anitem with the given name already exists under the given
folder, return that item rather than creating a new one.

Returns The item document that was created.

filelList (doc, user=None, path="", includeMetadata=False, subpath=True)
Generate a list of files within this item.

Parameters
¢ doc — The item to list.

* user — A user used to validate data that is returned. This isn’t used, but is present to be
consistent across all model implementations of fileList.

* path (str)— A path prefix to add to the results.

e includeMetadata (bool) — If True and there is any metadata, include a result which
is the JSON string of the metadata. This is given a name of metadata[-(number).json that
is distinct from any file within the item.

e subpath (boo1l)—If True and the item has more than one file, any metadata, or the sole
file is not named the same as the item, then the returned paths include the item name.

Returns Iterable over files in this item, where each element is a tuple of (path name of the file,
stream function with file data).

Return type generator(str, func)

filter (item, user=None)
Preserved override for kwarg backwards compatibility.

load (id, level=2, user=None, objectld=True, force=False, fields=None, exc=False)
Calls AccessControlMixin.load while doing some auto-correction.

Takes the same parameters as gi rder .models .model_base.AccessControlledMixin.load().

move (item, folder)
Move the given item from its current folder into another folder.

Parameters
e item (dict) - The item to move.
e folder (dict.) — The folder to move the item into.

parentsToRoot (item, user=None, force=False)
Get the path to traverse to a root of the hierarchy.

3.3.

Developer Documentation 37

Girder Documentation, Release 1.4.1

Parameters item (dict)— The item whose root to find
Returns an ordered list of dictionaries from root to the current item

recalculateSize (item)
Recalculate the item size based on the files that are in it. If this is different than the recorded size, propagate
the changes. :param item: The item to recalculate the size of. :returns: the recalculated size in bytes

remove (item, **kwargs)
Delete an item, and all references to it in the database.

Parameters item (dict) — The item document to delete.

setMetadata (item, metadata)
Set metadata on an item. A rest exception is thrown in the cases where the metadata JSON object is badly
formed, or if any of the metadata keys contains a period (‘.’).

Parameters
e item (dict) - The item to set the metadata on.

* metadata (dict) — A dictionary containing key-value pairs to add to the items meta
field

Returns the item document

textSearch (query, user=None, filters=None, limit=0, offset=0, sort=None, fields=None)
Custom override of Model.textSearch to filter items by permissions of the parent folder.

updateItem (item)
Updates an item.

Parameters item (dict)— The item document to update

Returns The item document that was edited.

Setting

class girder.models.setting.Setting
This model represents server-wide configuration settings as key/value pairs.

get (key, default="__default__’)
Retrieve a setting by its key.

Parameters

* key (str)— The key identifying the setting.

* default - If no such setting exists, returns this value instead.
Returns The value, or the default value if the key is not found.

getDefault (key)
Retrieve the system default for a value.

Parameters key (str)— The key identifying the setting.

Returns The default value if the key is present in both SettingKey and referenced in SettingDe-
fault; otherwise None.

set (key, value)
Save a setting. If a setting for this key already exists, this will replace the existing value.

Parameters

38 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

* key (str)— The key identifying the setting.
* value - The object to store for this setting.
Returns The document representing the saved Setting.

unset (key)
Remove the setting for this key. If no such setting exists, this is a no-op.

Parameters key (str)— The key identifying the setting to be removed.

validate (doc)
This method is in charge of validating that the setting key is a valid key, and that for that key, the provided
value is valid. It first allows plugins to validate the setting, but if none of them can, it assumes it is a core
setting and does the validation here.

validateCorePluginsEnabled (doc)
Ensures that the set of plugins passed in is a list of valid plugin names. Removes any invalid plugin names,
removes duplicates, and adds all transitive dependencies to the enabled list.

Assetstore

class girder.models.assetstore.Assetstore
This model represents an assetstore, an abstract repository of Files.

addComputedInfo (assetstore)
Add all runtime-computed properties about an assetstore to its document.

Parameters assetstore (dict)— The assetstore object.

getCurrent ()
Returns the current assetstore. If none exists, this will raise a 500 exception.

importData (assetstore, parent, parentType, params, progress, user, **kwargs)
Calls the importData method of the underlying assetstore adapter.

1list (limit=0, offset=0, sort=None)
List all assetstores.

Parameters

e limit — Result limit.

* offset — Result offset.

* sort — The sort structure to pass to pymongo.
Returns List of users.

remove (assetstore, **kwargs)
Delete an assetstore. If there are any files within this assetstore, a validation exception is raised.

Parameters assetstore (dict)— The assetstore document to delete.
File

class girder.models.file.File
This model represents a File, which is stored in an assetstore.

copyFile (srcFile, creator, item=None)
Copy a file so that we don’t need to duplicate stored data.

3.3. Developer Documentation 39

Girder Documentation, Release 1.4.1

Parameters

e srcFile (dict) - The file to copy.

* creator — The user copying the file.

e item - anew item to assign this file to (optional)
Returns a dict with the new file.

createFile (creator, item, name, size, assetstore, mimeType=None, saveFile=True, reuseEXxist-
ing=False)
Create a new file record in the database.

Parameters
* item - The parent item.
* creator — The user creating the file.
* assetstore — The assetstore this file is stored in.
¢ name (str)— The filename.
* size (int) - The size of the file in bytes.
* mimeType (str)— The mimeType of the file.
* saveFile (bool) - if False, don’t save the file, just return it.

* reuseExisting (bool) —If a file with the same name already exists in this location,
return it rather than creating a new file.

createlinkFile (name, parent, parentType, url, creator)
Create a file that is a link to a URL rather than something we maintain in an assetstore.

Parameters
* name (str)— The local name for the file.
* parent (folder or item)- The parent object for this file.
* parentType (str)— The parent type (folder or item)
e url — The URL that this file points to
* creator (dict) — The user creating the file.

download (file, offset=0, headers=True, endByte=None)
Use the appropriate assetstore adapter for whatever assetstore the file is stored in, and call downloadFile
on it. If the file is a link file rather than a file in an assetstore, we redirect to it.

Parameters
e file — The file to download.
* offset (int)— The start byte within the file.

* headers (bool)— Whether to set headers (i.e. is this an HTTP request for a single file,
or something else).

* endByte (int or None) - Final byte to download. If None, downloads to the end of
the file.

propagateSizeChange (item, sizelncrement, updateltemSize=True)
Propagates a file size change (or file creation) to the necessary parents in the hierarchy. Internally, this
records subtree size in the item, the parent folder, and the root node under which the item lives. Should be
called anytime a new file is added, a file is deleted, or a file size changes.

40 Chapter 3. Table of contents

Girder Documentation, Release 1.4.1

Parameters
e item (dict) - The parent item of the file.
* sizeIncrement (int)— The change in size to propagate.

* updateItemSize — Whether the item size should be updated. Set to False if you plan
to delete the item immediately and don’t care to update its size.

remove (file, updateltemSize=True, **kwargs)
Use the appropriate assetstore adapter for whatever assetstore the file is stored in, and call deleteFile on it,
then delete the file record from the database.

Parameters
e f£ile — The file document to remove.

* updateItemSize — Whether to update the item size. Only set this to False if you plan
to delete the item and do not care about updating its size.

Upload

class girder.models.upload.Upload
This model stores temporary records for uploads that have been approved but are not yet complete, so that they
can be uploaded in chunks of arbitrary size. The chunks must be uploaded in order.

cancelUpload (upload)
Discard an upload that is in progress. This asks the assetstore to discard the data, then removes the item
from the upload database.

Parameters upload (dict)— The upload document to remove.

createUpload (user, name, parentType, parent, size, mimeType=None)
Creates a new upload record, and creates its temporary file that the chunks will be written into. Chunks
should then be sent in order using the _id of the upload document generated by this method.

Parameters
* user (dict) — The user performin